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H I G H L I G H T S

• We incorporate a variety of principles
and indicators into an improved ZSG-
DEA model.

• We conduct a multi-criteria allocation
of China’s CEA by 2030 to provincial
shares.

• We measure the total and per capita
space for carbon emissions by pro-
vince.

• All provinces reach the DEA frontier
with different CEA ranging from 4.21
to 16.77 Gt.

• Differentiated provincial reduction
policies are the key to achieving
China’s INDCs.
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A B S T R A C T

Accelerating global warming has suggested the importance of controlling greenhouse gas emissions associated
with human activities. In striving to fulfill the Paris Agreement, China has announced its Intended Nationally
Determined Contributions (INDCs) aimed at reducing its carbon dioxide (CO2) emission intensity by 60–65% in
2030 against the level of 2005. However, China’s INDCs cannot be fulfilled without formulating appropriate
schemes for the allocation of carbon emission allowance (CEA) at sub-national scales. To help close the gap in
our knowledge, this paper starts with measuring the overall CEA of China by 2030, and then proposes a science-
based scheme for CEA allocation by developing an improved zero sum gains-data envelopment analysis (ZSG-
DEA) model. It demonstrates that the final CEA of some northern provinces can be cut down as compared to their
initial shares and, conversely, most southern provinces experience an increase in their CEA. Comparing the final
share of CEA by province with current carbon emissions, we observe that provinces with abundant energy
reserves, such as Shanxi, Inner Mongolia and Shaanxi, tend to be operating in a state of overshoot in terms of
space for carbon emissions (SCE). In contrast, there remains SCE when it comes to Guangdong, Hunan, Fujian,
etc. The remaining provinces, such as Heilongjiang, Hebei and Ningxia, are close to the break-even point. In view
of the differing SCE of individual provinces, common but differentiated policies for CO2 emission control would
be the key to achieving China’s INDCs. The research findings lay a scientific basis for the Chinese government to
make its INDCs come true through inter-provincial collaboration on emission reduction, but also serve as a
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reference for fueling further scientific discussions and development of schemes for the allocation of responsi-
bility for carbon emissions at multiple scales within and beyond China.

1. Introduction

Numerous studies have observed a near-linear relation between
global warming and carbon dioxide (CO2) emissions associated with
human activities since the pre-industrial era [1,2,3]. In striving to
combat climate change through collaborative initiatives worldwide,
more than 190 parties (nations and regions) to the United Nations
Framework Convention on Climate Change (UNFCCC) formally reached
an agreement in Paris in December 2015 that the global-average tem-
perature rise should stay below 2 °C, preferably below 1.5 °C, above pre-
industrial levels [4]. The Paris Agreement on climate change represents
a landmark in global environmental governance not only because it
legitimates the agreed threshold level (< 2 °C) for increase in tem-
perature, but also because it differs in nature from previously docu-
mented “top-down” international agreements, such as the Kyoto Pro-
tocol, in the sense that it leaves more room for individual parties to
formulate their Intended Nationally Determined Contributions (INDCs).
As the top-down approach has made little progress and is now at an
impasse [5,2], there is a growing interest in assessing the effects of
“bottom-up” INDCs on adaptation and mitigation of climate change
[6,7].

As the largest CO2 emitter in the world [8], China played a con-
structive role in the negotiation of the Paris Agreement by submitting
its ambitious INDCs [9,10]. The overarching target of China’s INDCs is
to reduce the intensity of CO2 emissions by 60–65% in 2030 as com-
pared to the level of 2005. It represents a step ahead from the goal
announced in 2009 to reduce the CO2 emission intensity by 40–45%
between 2005 and 2020 [11,12]. Meanwhile, Chinese economy has
now entered “New Normal” — a new phase focusing more on quality
than on speed [13]. A reasonable expectation for China’s economic
growth between 2020 and 2030 would be at an average rate of 4–6%,
depending on the outcome of implementing structural reforms [14]. In
that sense, future allowable carbon emissions for China will become a
finite common-pool resource that must be shared among different parts
of the country, especially at the provincial level [15]. This brings into
focus the provincial allocation of China’s carbon emission allowance
(CEA) in keeping with INDCs.

While to our knowledge research into this question remains un-
derexplored, lessons can be learned from existing literature seeking to
determine the CEA by province in China in accordance to the goal for
carbon emission control by 2020. For instance, a composite index was
proposed by Yi et al. [16], who allocated China’s CEA at the provincial
level by 2020 by aggregating GDP per capita, accumulated carbon
emissions and energy consumption per unit of industrial added value
under four scenarios. In a similar study, Wang et al. [17] brought to-
gether per capita GDP, per capita emissions, energy consumption of
industry per unit of value-added and the ratio of non-fossil fuel to
primary energy consumption into a so-called China Regional Burden
Differentiation Model to determine China’s provincial CEA in 2020. Yu
et al. [18] measured the contribution of 13 factors to the carbon
emissions of 30 Chinese provinces and then allocated the national CEA
to each province on the basis of the anticipated growth rate of each
factor in 2020. By making use of the Shapley value method to China’s
CEA allocation for 2020, Zhang et al. [19] concluded that regions with
indicators like higher GDP and carbon outflow should be allocated with
more emission quotas.

To operationalize the CEA allocation, some researchers have chosen
to focus on the cities as a unit of analysis. Han et al. [20] developed a
similar system of indicators through an analytic hierarchy process
method and accounted for the CEA of all the cities within Jing-Jin-Ji

region in keeping with China’s 2020 goal. Li et al. [21] applied a
maximum deviation method to allocate the CEA increment from 2015
to 2020 to different Chinese cities in the Pearl River Delta region by
taking into account population, GDP and historical carbon emissions.
Despite the differing allocation schemes employed in these studies
aforementioned, most of them consider the equity principle as the first
principle of distributive justice. The significance of the equity principle
to sharing climate burdens and emission rights has been demonstrated
in an extensive literature, from diverse perspectives such as egalitarian
(per capita emissions), ability-to-pay (per capita GDP), grandfathering
(historical carbon emissions), etc. [22,23,24].

At the same time, the need for multi-criteria allocation schemes has
been noticed. A prominent advantage over single-criterion allocation is
that multi-criteria allocation is likely to give rise to less difference be-
tween the smallest and largest targets for different entities, which en-
ables more consensus-based entitlements [25]. Moreover, multi-criteria
allocation schemes make it possible to bridge the gap between devel-
oped and developing countries who often give preferences to different
allocation principles [24]. The inclusion of various allocation principles
allows for the consideration of disparity among provinces, and ulti-
mately facilitates the implementation of the CEA allocation scheme.
Thus, in search of implementable allocation schemes for CEA, addi-
tional allocation principles such as efficiency, feasibility and sustain-
ability have been increasingly adopted beyond the equity principle
[26,17,16]. On the other hand, the challenge for mitigation and adap-
tation of climate change in different regions would depend primarily on
their respective social, economic and environmental status [27,28]. In
that sense, one-to-one correspondence can be identified between the
different principles (i.e., equity, efficiency, feasibility and sustain-
ability) and sustainability pillars (i.e., social, economic and environ-
mental). For instance, the feasibility principle can be interpreted as the
abatement cost of carbon emissions from the economic pillar [17], and
the sustainability principle from the environmental pillar could refer to
the absorptive capacity to sequestrate CO2 [29].

In developing multi-criteria allocation schemes, various methods
have been introduced. Examples include single indicator approach,
composite index approach, and game theoretic approach [30]. Of these,
the composite index approach aimed at bringing together diverse
principles and indicators with determined weights has reached world-
wide popularity [20,30]. However, the approach has been criticized for
its subjectivity and arbitrariness, but also for the fact that it focuses on
the absolute amount of indicators (e.g., provincial GDP, population)
while looking down upon the relative performance of the inflows and
outflows in the whole system [31,32,33]. As such, some provinces
might obtain redundant CEA compared with its actual needs, and vice
versa.

By contrast, an optimization approach aimed at improving the
technical efficiency of the whole system, namely data envelopment
analysis (DEA), has emerged as another common way of allocating CEA.
The traditional DEA model was proposed by Charnes et al. [34] and
Banker et al. [35], assuming that all decision making units (DMUs) in a
free market can freely produce input and output variables, and that the
DEA efficiency of DMUs can be measured through the ratio of multiple
inputs to outputs. However, this hypothesis does not hold true when it
comes to CEA allocation, as in this context the overall CEA of a given
region should be limited to a certain range of values. To overcome this
weakness, a revised DEA model, namely zero sum gains-DEA (ZSG-
DEA), was proposed by Lins et al. [36]. The rationale of ZSG-DEA for
allocating CEA is that when a DMU (e.g., a city, a province, a country,
etc.) decreases its CEA to yield greater DEA efficiency, the CEA entitled
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to any other DMUs must be increased by the same amount to maintain
the overall CEA unchanged. By taking the relative performance of dif-
ferent DMUs into consideration without weighting (as opposed to the
composite index approach), DEA or ZSG-DEA method allows for a re-
allocation of the redundant CEA among provinces given their individual
technical efficiency.

By adopting population and energy consumption as input variables,
and GDP and carbon emissions as output variables, Gomes and Lins
[37] pioneered to allocate the CEA among the UNFCCC Annex I parties
utilizing a ZSG-DEA model in order to achieve the goal of Kyoto Pro-
tocol. Afterwards, an increasing number of studies have implemented
ZSG-DEA as a means to ensure a robust and reasonable allocation of
resources and emission allowance. For instance, Wang et al. [38] in-
troduced a ZSG-DEA model to allocate China’s CEA by 2020 towards 30
provinces by selecting total energy consumption, CO2 emissions and
non-fossil energy consumption as inputs, and GDP and population as
outputs. By creating a ZSG-DEA model that set population and energy
consumption as inputs and GDP and carbon emissions as outputs, Pang
et al. [39] redistributed the CEA among 124 countries that were subject
to the Kyoto Protocol in 2010. Similarly, Chiu et al. [40] evaluated the
DEA efficiency of 24 EU nations from 2005 to 2007 on the basis of a
ZSG-DEA model where national CEA was an input variable and energy
consumption, government spending and GDP were output variables.
Wen and Zhang [41] developed a non-radial ZSG-DEA model in support
of the allocation of CEA across the 30 Chinese provinces in 2020 by
treating carbon emissions and GDP as outputs, and capital stock, po-
pulation and energy consumption as inputs. Likewise, Miao et al. [32]

took advantage of a ZSG-DEA model to investigate the DEA efficiency of
provincial carbon emissions in China from 2006 to 2010 by choosing
capital stock, population and energy consumption as inputs, and GDP
and carbon emissions as outputs.

Irrespective of the prevalence of ZSG-DEA models for determining
the CEA particularly at the provincial level, it remains problematic not
only due to the lack of transparency in defining allocation principles
other than the equity and efficiency principles, but also in selecting
indicators as a basis for quantifying the various principles and reflecting
regional differences in a systematic way. Moreover, when it comes to
running a ZSG-DEA model, the boundary between input and output
variables often seems to be ambiguous. For instance, carbon emissions
in some studies are modelled as inputs while in some others they are
outputs. Besides, as noted above, existing literature focuses primarily
on the way to achieve the China’s 2020 goals; therefore, there is a great
need for aligning timely provincial allocation schemes with China’s
INDCs towards 2030.

To promote the transparency, scientific robustness and policy re-
levance of CEA allocation, this paper is intended to introduce an im-
proved ZSG-DEA model for the allocation of provincial CEA in ac-
cordance to China’s INDCs responding to the Paris Agreement. Overall,
the novel contributions of this article to the literature lie in: (1) in-
tegrating multi-criteria allocation principles and indicators into an
improved ZSG-DEA model; (2) developing an optimal scheme for the
allocation of CEA to achieve China’s INDCs at the provincial level; (3)
serving as a reference for determining the fair share of resources or
emission permits across regions; and (4) providing policy

Fig. 1. Schematic of CEA allocation.
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recommendations for closing the gap between INDCs and inter-pro-
vincial emission trading scheme (ETS).

To this end, the rest of this paper is structured as follows. In Section
2, the methodology and data for our analysis are introduced. Section 3
presents the empirical results derived from the ZSG-DEA model estab-
lished in the paper. Section 4 compares the results with literature and
offers insights into policy implications. Conclusions are drawn in
Section 5.

2. Methodology and data

The schematic of the CEA allocation employed in this paper is il-
lustrated in Fig. 1. First, a suite of allocation principles and indicators
are selected as output variables for CEA allocation that are expected to
capture the three pillars of sustainability (i.e., social, economic and
environmental) while reflecting the four principles (namely equity,
efficiency, feasibility and sustainability). Second, historical carbon
emissions by province lead to an estimate of initial CEA that would be
reallocated across provinces given their DEA efficiency. Finally, we
continue the process of reallocation until that all the provinces have
reached the DEA efficiency of 100%. Comparing the final CEA with
current carbon emissions (CCE) of provinces, the space for carbon
emissions (SCE) by province can be measured.

2.1. Multi-criteria allocation scheme

As opposed to any single-criterion CEA allocation scheme, multi-
criteria ones accommodate indicators in a more systematic way re-
flecting common but differentiated responsibility for climate change
mitigation. As suggested by Fang et al. [26], the equity, efficiency,
feasibility and sustainability principles are adopted in this paper for
CEA allocation. Furthermore, on the basis of a comprehensive review of
literature, a suite of indicators intended for capturing these four prin-
ciples are selected in accordance with the social, economic and en-
vironmental pillars (Fig. 2). However, some indicators, such as ecolo-
gical resilience, are excluded due to the difficulty in measurement. The
correlation analysis allows for further selection of the indicators, by
which those correlated insignificantly with historical carbon emissions
are deleted as well. Finally, the equity principle is expressed by popu-
lation (social), GDP (economic) and historical carbon emissions (en-
vironmental), the efficiency principle by the ratio of expenditure on R&
D to GDP (social) and energy intensity (economic), the feasibility
principle by general public budget revenue (social), elasticity coeffi-
cient of energy consumption (economic) and the carrying capacity of
carbon emissions (environmental), and the sustainability principle by
the proportion of urban residence (social) and the share of tertiary in-
dustry (economic).

2.2. ZSG-DEA model

As noted, the hypothesis of the classical DEA that all DMUs are
independent and have no impacts on others’ actions is untenable for a
competitive market, particularly given the fact that the overall CEA is
bound to a value. What’s more, through classical DEA model one could
investigate the DEA efficiency of each DMU, yet it is unable to bring
them together into the DEA frontier for CEA reallocation. To maximize
the DEA efficiency while making constant the overall CEA by 2030 as
inputs, this paper develops an input-oriented ZSG-DEA model.

One prominent merit of this model is that it allows for optimization
of all the DMUs in order to reach the DEA frontier without altering the
overall CEA. By improving the DEA efficiency of given DMUs and
bringing them together to the DEA frontier, the inputs of inefficient
DMUs (i.e., provincial CEA) must be declined. Meanwhile, the re-
dundant CEA should be reallocated to other DMUs to keep the overall
CEA unchanged. For instance, provided that DMUk (k=1,2,…,30) with
a CEA of Xk is an inefficient unit with its DEA efficiency θ, the CEA of

DMUk has to reduce by Xk·(1-θ) to reach the DEA frontier and other
DMUs would increase their CEA according to the weights expressed as
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where θ refers to the DEA efficiency of DMUs; EZSG refers to the
minimum DEA efficiency of DMUk; λi refers to the weight of DMU of i; Xi

refers to the initial CEA as input; yiequity, yiefficiency, yifeasibility and
yisustainability refer to the quantified principles of equity, efficiency, fea-
sibility and sustainability, respectively.

To realize the allocation of CEA, the overall CEA must be measur-
able. Assuming that the annual GDP growth is at a rate of 6.0% on
average during the phase of “New Normal”, and that there will be a
linear decline in emission intensity, the overall CEA for the next
15 years could be calculated as:

= + −− −TCA GDP p I q·(1 ) · ·(1 )t t
t t2015

2015
2015 (3)

= − = − −q I
I

I α
I

1 1 ·(1 )2030

2015

2005

2015
15 15

(4)

Fig. 2. Multi-criteria indicators for CEA allocation. “Soc”, “Eco” and “Env”
represent social, economic and environmental, respectively.
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where TCAt refers to the overall CEA in year t; GDPt refers to the GDP in
year t; p refers to the projected rate of GDP growth in next 15 years;
I2015 refers to the emission intensity in 2015; q refers to the rate of
decline in emission intensity in the next 15 years; α refers to the tar-
geted reduction in emission intensity in 2030 compared with the level
of 2005.

The initial CEA by province can be determined in accordance with
the weights of historical carbon emissions for different provinces, with
the aim of not causing a lot of derivation from a grandfathering per-
spective. As Formula (5) shows, ICEAp refers to the initial CEA of Pro-
vince p and CEp refers to the historical carbon emissions of Province p.
The resulting ICEA is adopted as input variables that would be re-
allocated through the ZSG-DEA model afterwards.

=
∑

ICEA TCA
CE

CE
·p

p

p (5)

As illustrated in Fig. 3, a multi-criteria allocation scheme has been
constructed as a benchmark for CEA reallocation. To quantify all the
selected indicators, GM (1,1) is employed to project the trends between
2016 and 2030, which is a grey model proposed by Deng [42] and has
been widely applied to the projections of resources and emissions
[43,44]. Given the complexity that multiple indicators may show si-
milar trends along the time-series, we run a principal component ana-
lysis to aggregate these indicators for each principle and the resulting
components within single principles are weighted equally. Hence, each
principle can be quantified through the projections of all the indicators
involved. The formulas are as follows:

∑ ∑ ∑= =PR w F w α Ind· · ·i ij ij (6)

= −
−

∗PR PR PR
PR PR
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max min (7)

= −
−

∗PR PR PR
PR PR
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where PR and PR* refer to the quantified principles before and after
standardization, respectively; w refers to the weights of each prominent
component n, w=1/n; aij refers to the score of each indicator j within
the resulting components of the principle i; Indij refers to indicator j for
principle i. Unlike the equity and efficiency principles, higher ranking
of the feasibility principle would lead to less share of CEA according to
the principal component analysis, because it is dominated by general
public budget revenue that corresponds to enhanced ability to control
carbon emissions and, therefore, to less CEA. The same applies to the
sustainability principles. For this reason, the standardization of these
two principles could be conducted with Formula (8).

2.3. Data

Table 1 summarizes the indicators adopted for the measurement of
the overall CEA, the initialization of provincial CEA and the construc-
tion of the multi-criteria allocation scheme. It is worth mentioning that
the carrying capacity of CO2 sequestration within the principle of fea-
sibility is calculated according to the respective capacity of different
land use types within a region to store CO2 through photosynthesis. For
details of the data and calculation, please see Fang et al. [29,45–46].

Besides, we utilize the Data Processing System (DPS) software to
predict aforementioned indicators for the period 2016–2030 with the
GM (1,1) model. SPSS 16.0 is applied to investigate the correlation
among indicators as well as the principal component analysis to
quantify the principles. DEAP software and Excel are used for DEA ef-
ficiency calculation and provincial CEA reallocation.

3. Results

3.1. Changes in carbon emission allowance through reallocation

Fig. 4 tracks the DEA efficiency of the initial allocation and its re-
allocation. Ten out of the 30 provinces have DEA efficiency that is
higher than the average of initial efficiency (0.44). Beijing, Hainan and
Qinghai already reach the DEA frontier where the DEA efficiency is
equal to 1, whereas Shanxi reports the lowest DEA efficiency of 0.08.
The average DEA efficiency increases to 0.61 after the first reallocation,
even though no additional provinces reach the DEA frontier. The DEA
efficiency of Shanxi almost triples while still ranking the last. The
average DEA efficiency amounts to 0.81 and 0.96, respectively, as a
result of the second and third reallocation, whereas the number of
provinces with the DEA efficiency of 1 remains constant. Tremendous
changes are found in the fourth reallocation, in which Liaoning, Jilin,
Jiangsu, Fujian, Jiangxi, Shandong, Henan, Guangdong and Ningxia
reach the DEA frontier in addition to Beijing, Hainan and Qinghai.
Nevertheless, the average DEA efficiency slightly increases from 0.96 to
0.99. Ultimately, all the provinces achieve the maximum DEA efficiency
of 1 after the final reallocation.

Fig. 5 depicts the changes in the provincial shares of the overall
CEA. The average CEA of the 30 provinces granted in the initial allo-
cation is estimated at 8.44 Gt with a standard variance of 6.20 Gt.
Shanxi and Hainan are found to make up the largest and smallest share
of the CEA, respectively, with an estimation of 26.62 Gt and 3.91 Gt.
This is because of the fact that the initial allocation is solely dependent
on the historical carbon emissions by province, which could be inter-
preted as a grandfathering perspective. Through all the five rounds of
reallocation, the CEA of Shanxi, Inner Mongolia, Shandong, Liaoning,
Hebei, Shaanxi and Xinjiang decreases by 165.6%, 34.7%, 43.6%,
28.4%, 35.3% and 232.1%, respectively. Conversely, an increase in the
share of CEA is witnessed in the remaining 21 provinces. For instance,
Guangdong, Jiangxi, Beijing, Fujian and Guangxi enlarge their CEA by
44.1%, 140.0%, 227.6%, 96.0% and 109.8%, respectively.

By looking deeper into the geographical distribution of the changes
to CEA by province, one may notice the agglomeration effect as evident
from the fact that numerous provinces located in north China experi-
ence a significant decline in the CEA as compared to their initial shares
and, conversely, many of the southern provinces have an increment of
CEA. Slight changes occur mostly in middle China, where provinces
either increase their CEA up to 4.00 Gt or decrease their CEA up to 3.00
Gt.

Fig. 3. Schematic of the ZSG-DEA model developed in this paper.
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Fig. 6 represents the distribution of frequency that refers to the
number of provinces whose CEA falls into a range of value prior to and
during the reallocation. As shown, the distribution of the initial CEA
covers the largest spectrum ranging from 1.29 Gt to 26.62 Gt with a
standard variance of 6.20 Gt, suggesting that a CEA between 2.24 Gt
and 14.64 Gt is entitled to more than two thirds of the provinces. After
the first reallocation, the spectrum is shortened to between 2.23 Gt and
19.80 Gt, and two thirds of the provinces own a CEA ranging from 3.87
Gt to 13.02 Gt. Through the second reallocation, the CEA of 70% of the
provinces stays within a range of 5.01–11.87 Gt. The third reallocation
corresponds to the shortest spectrum of CEA shares ranging from 4.05
Gt to 16.47 Gt. The fourth and fifth reallocation finally witnesses that
the CEA of each province remains stable (between 4.21 Gt and 16.76
Gt), while the standard variance decreases to 3.26 Gt eventually. As a
result, one may conclude that this reallocation driven by the ZSG-DEA
model could not only maximize the DEA efficiency of individual pro-
vinces but also contribute to the convergence of all the provinces by
shrinking the CEA gap to some extent.

3.2. Final carbon emission allowance of provinces

Fig. 7 delineates the ranking of provinces as per the principles of
equity, efficiency, feasibility and sustainability, respectively. As shown,
the first two principles are gained prominence in eastern provinces such
as Shandong, Guangdong and Jiangsu. In the case of Guangdong, for
instance, our principal component analysis indicates that GDP (89.2%)
and population (9.9%) contribute the most to the equity principle,
while the ratio of expenditure on R&D to GDP dominates the efficiency
principle (over 90.0%). More than 20 provinces (e.g., Guizhou, Yunnan,
Gansu) have the advantage of reflecting the principles of feasibility and

Table 1
Indicators of the DEA-ZSG model and the data sources.

Composition Indicators Data sources

The overall CEA GDP of China China Statistic Yearbooks 2006–2016
Emission intensity of China China Emission Accounts & Datasets (CEADs)

Input variables Historical carbon emissions by province CEADs
Output variables GDP by province Statistical Yearbooks of each province 2006–2016

Population by province
Energy intensity by province
Ratio of expenditure on R&D to GDP by province
General public budget revenue by province
Elasticity coefficient of energy consumption by province
Proportion of urban residence by province
Share of tertiary industry by province
Carrying capacity of CO2 sequestration by province [29,45]

Fig. 4. The DEA efficiency of initial allocation and reallocation.

Fig. 5. Geographical distribution of provincial CEA through reallocation. All
the provinces are marked on the basis of the changes to the provincial CEA
between the initial allocation and final reallocation. Tibet, Taiwan, Hong Kong
and Macau are not displayed due to the lack of data.

Fig. 6. Frequency distribution of provincial CEA through reallocation.
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sustainability through the CEA reallocation, many of which are located
in southwest and northwest China. In the case of Guizhou, the general
public budget revenue contributes the most (over 90.0%) to the feasi-
bility principle, while the proportion of urban residence (49.1%) and
the proportion of the tertiary industry (50.9%) contribute equally to the
sustainability principle.

Fig. 8 displays the discrepancy of geographical distribution between
the annual average and per capita CEA of 30 provinces. The spatial
pattern of the annual average CEA is prominent in the sense that pro-
vinces in south and east China tend to account for a large share of the
overall CEA. This is particularly true for Guangdong, Shandong, Jiangsu
and Henan, whose CEA is at least over 0.70 Gt. On the contrary, those in
northeast and northwest China occupy a smaller CEA (less than 0.60
Gt). A definitely different pattern occurs when it comes to the per capita

CEA. The northwestern provinces of China (e.g., Ningxia, Qinghai) own
a larger per capita CEA than others. These two patterns underline the
need for a complementary use of the total and per capita metrics in
interpreting the allocation scheme proposed in this paper.

Fig. 9 compares the CEA of each province with their CCE and ex-
amines the SCE defined as CEA minus CCE. Amongst, negative SCE can
be found in Shanxi, Inner Mongolia, Shaanxi, Xinjiang, Shandong and
Liaoning, whose CCE has already exceeded their annual average CEA by
0.99 Gt, 0.44 Gt, 0.19 Gt, 0.13 Gt, 0.05 Gt and 0.04 Gt, respectively.
Heilongjiang, Hebei, Ningxia, Gansu, Anhui, Hainan, Tianjin, Sichuan,
Qinghai, Chongqing, Shanghai and Guizhou are approaching to the
break-even point with a slight surplus of SCE (less than 0.30 Gt). On the
contrary, Guangdong, Hunan, Fujian, Jiangxi, Guangxi, Beijing, Hubei,
Yunnan, Henan, Zhejiang and Jilin are under relatively low levels of

Fig. 7. The ranking of all the provinces
based on the four principles. After the
quantification of each principle by province,
we standardize these 30 scores within each
of the four principles, respectively, resulting
in a range of value between 0 and 1. Hence
the spectrum primarily shows the provincial
ranking within each principle instead of
quantifying the contributions of various
principles to single provinces.

Fig. 8. Geographical distribution of (a) the annual average CEA and (b) the per capita CEA by province. Tibet, Taiwan, Hong Kong and Macau are not displayed due
to the lack of data.
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stress to control carbon emissions. However, this does not necessarily
represent an absolute SCE, because the carbon emissions of most pro-
vinces have not peaked yet and thus will continue to rise [47,48].

4. Discussion

4.1. Comparison with literature

In general, this paper proposes a moderate CEA allocation scheme,
as witnessed by Fig. 10 that provides a comparison between existing
studies on CEA allocation across 30 Chinese provinces with ours. In
some research, however, the highest provincial CEA exceeds the lowest
one by over 26 times! That can hardly be implemented because of the
absence of the equity principle in any recognizable sense. Except for
Fang et al. [26], all these papers set the overall CEA in compliance with
China’s 2020 goal and conducted allocation by establishing ZSG-DEA
models that took into account only few indicators (e.g., GDP per capita,
energy consumption, and/or population) as either input or output
variables without unambiguous criteria. Although a number of in-
dicators were chosen by Fang et al. [26] and the overall CEA was de-
termined by China’s INDCs towards 2030, their allocation procedure
corresponds to a composite indicator approach that incorporates mul-
tiple indicators into a single-score metric for ease of understanding
[30]. While this approach has received much attention from academia,
it differs in nature from DEA method which is capable of integrating a
variety of principles and indicators in a more sophisticated manner. For
this reason, our improved ZSG-DEA model allows for a more equitable,
efficient, feasible and sustainable allocation scheme that gives pre-
ference to those of the provinces that would have considerable potential
to increase the outputs without causing increase in the overall CEA of
China.

4.2. Policy implications

Our study offers novel insights into the implementation of China’s

Fig. 9. Annual carbon emission balance by province. Negative SCE denotes that
annual average CEA could not offset CCE. SCE break-even point denotes that
annual average CEA exceeds CCE by less than 0.30 Gt. Positive SCE denotes that
annual average CEA exceeds CCE by at least 0.30 Gt.

Fig. 10. Comparison of different schemes for the allocation of China’s carbon emission allowance derived from literature [26,55–57]. All the results have been
converted into (a) annual average CEA and (b) per capita CEA, respectively.
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INDCs at the provincial level. The allocation scheme proposed in this
paper allows policymakers to determine not only the CEA of Chinese
provinces, but also the corresponding SCE, which is a key to under-
standing differentiated emission reduction commitments and pressures
confronted by individual provinces. The findings are particularly suited
for pinpointing provinces with negative SCE (e.g., Shanxi, Inner
Mongolia, Shaanxi) — those that face the challenge of achieving an
absolute decoupling of their CO2 emissions from economic growth.
Furthermore, it should be noted that our analysis provides an optimistic
estimate of provinces running a slight surplus of SCE (e.g., Anhui,
Hainan, Hebei), since the SCE is defined as CEA minus CCE and over-
looks the fact that the emissions of many provinces show negative or
weak decoupling from economic growth and thus will continue to rise
[49]. Though the remaining provinces (e.g., Yunnan, Jiangxi, Guangxi)
are not necessarily involve absolute emission reduction targets, there is
still a need for controlling their emissions and reinforcing decoupling
from economic growth.

In addition to laying a basis for formulating regional strategies for
climate change mitigation and emission reduction, the findings would
also be informative for the market construction of Chinese ETS — an
inter-provincial cap-and-trade system that was formally launched in the
end of 2017 and remains limited to electric power generation industry
that accounts merely for a fraction of carbon emissions within Chinese
territory. In other words, the proposed allocation scheme would help
close the gap between INDCs and ETS, both of which the Chinese
government is committed to. Nevertheless, the determination of caps
for trading should be made cautiously. Only a tiny fraction of CEA of
provinces with positive SCE should be allowed for sale. Those provinces
with negative SCE must be prevented from selling CEA but they can be
a buyer. In principle, provinces might sell their redundant CEA pro-
portional to the positive SCE.

To our knowledge, this study, for the first time, takes into con-
sideration the difference of provincial performance on the social, eco-
nomic and environmental pillars of sustainability simultaneously, by
bringing together a systematic set of diverse principles and indicators
into the ZSG-DEA model. Because of this, the resulting allocation
scheme is able not only to reconcile the INDCs with regional develop-
ment goals but to contribute to the trade-offs between various provinces
— the key to consensus building on implementable schemes for re-
gional CEA allocation. Moreover, the underlying methodology is also
appropriate for use in allocating the permits of additional emissions or
resources at multiple scales in the pursuit of optimal system efficiency.

4.3. Uncertainties and limitations

We acknowledge that our analysis remain the following limitations
that should be addressed in future research: (1) the accounting of his-
torical carbon emissions as a basis for initial CEA merely considers
emissions from fossil fuels, and therefore neglects those from cement
production and land use, especially for those embodied in interregional
trade of goods and services [50,51]. This leads to calls for input–output
analysis (IOA), by which the consumption-based accounting of pro-
vincial carbon emissions could enhance the scientific robustness of in-
itial allocation of CEA [52], (2) when estimating China’s overall CEA by
2030, we presume a linear reduction of emission intensity and a fixed
rate of GDP growth, which is not consistent with the reality and needs
to be improved through the development of scenario analysis aiming to
track the dynamics of emission intensity and GDP growth but also other
input and output variables adopted in the modelling where economic
sense is insufficiently considered in its current form; (3) in addition to
the goal of reducing emission intensity by 60–65% in 2030, China’s
INDCs are also committed to peaking the carbon emissions around
2030. To fulfill these dual goals, it makes sense to conduct additional
assignments of CEA for each province on a yearly basis in accordance to
the anticipated trajectories of provincial carbon emissions; (4) DEA or
ZSG-DEA method has the merit of assessing the technical efficiency

among DMUs, whereas this may bring the risk of overemphasizing
technical efficiency and overlooking other principles; (5) CO2 emissions
are often found to be accompanied by other pollutants (e.g., NOx, SO2),
even though in this paper we take the former as the only undesirable
emissions to control. With the consideration of multi-pollutants, there
seems to be much room for investigation into the trade-offs and co-
benefits of regulations for different emissions when doing allocation
[53,54]; and (6) the principles of equity, efficiency, feasibility and
sustainability are treated without weighting, but no two entities actu-
ally hold the same importance. Therefore, it may make sense to employ
unequal weighting that reflects stated or revealed preferences and
judgments of provincial performance on social, economic and en-
vironmental sustainability.

5. Conclusions

This paper begins with the measurement of the overall CEA by 2030
and further establishes an improved ZSG-DEA model to allocate the
CEA to the 30 Chinese provinces, where the initial provincial CEA de-
termined by the historical carbon emissions is treated as inputs and a
suite of indicators pertaining to the equity, efficiency, feasibility and
sustainability principles are selected as outputs. Ultimately, all the
provinces reach the DEA frontier with a CEA ranging from 4.21 Gt to
16.77 Gt. Specifically, some northern provinces are found to cut down
their CEA while most southern provinces experience an increase in their
CEA, as opposed to the initial shares. Comparing the final share of CEA
by province with CCE, we observe that positive SCE is witnessed in 12
provinces including Guangdong, Hunan, Fujian, etc. The SCE of re-
maining provinces such as Heilongjiang, Hebei, Ningxia is approaching
to the break-even point. The findings are particularly suited for pin-
pointing provinces with negative SCE, highlighting the need for region-
specific policies and inter-provincial collaboration that would help
China achieve a sustainable transition. As such, the multi-criteria al-
location scheme proposed in this paper not only lays a scientific basis
for the Chinese government to make the INDCs implementable at the
provincial level, but also serves as a reference for fueling further sci-
entific discussions and development of schemes for the allocation of
responsibility at multiple scales within and beyond China. Moreover,
the analysis is of benefit to closing the gap between INDCs and ETS,
with the recognition that a tiny fraction of CEA of provinces with po-
sitive SCE can be allowed for sale, and that those with negative SCE can
be a buyer merely.

However, the complexity and heterogeneity embodied in the re-
gional allocation of CEA convince us that no single scheme should be
interpreted as the “golden standard”. Our allocation scheme, which
takes into consideration the difference of provincial performance on the
social, economic and environmental pillars of sustainability, is not an
exception. Thus, it does not pretend to be useful for all purposes, and it
is not surprising that more elaborated or alternative schemes for the
allocation of China’s CEA at multiple scales will continue to emerge as
the next step towards a more comprehensive implementation of China’s
INDCs. To that end, we suggest that further improvements need to focus
on the following prioritized directions: (1) methodological integration
of DEA and IOA to fully capture the provincial responsibility for carbon
emissions from a consumption perspective; (2) development of scenario
analysis to track the dynamics of input and output variables (e.g.,
emission intensity, GDP) so as to ensure accurate estimates in future
trends; (3) inclusion of simulation of provincial peak emissions with the
aim of achieving the dual control of emission intensity and total amount
of CO2 by 2030, as regulated in China’s INDCs; and (4) linking the re-
sultant CEA to the national ETS for policy simulation in marketing.
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