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H I G H L I G H T S  

• Tracking carbon emissions historical trend in China’s eight industrial sectors. 
• Regression analysis and Monte Carlo simulation to predict emissions trajectories. 
• Agriculture, Building, Others and Transportation are likely to peak before 2025. 
• Electricity and Mining may peak after 2030, while Business remains unclear. 
• Focusing on the emissions of various sectors facilitates meeting the Paris Agreement by 2030.  
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A B S T R A C T   

To maintain global warming below 2 ◦C, as per the Paris Agreement, China should stop its energy-related carbon 
emissions from increasing by 2030. Given the dominating role of industrial-specific emissions in the national 
emissions inventory, exploring the potential peaking pathways of emissions in China’s diverse industrial sectors 
is necessary. By accounting for the emissions from China’s eight sectors over the past 23 years, this study ex
amines the Environmental Kuznets Curve hypothesis for the eight sectors using both regression analysis and 
Monte Carlo simulation. We found that seven out of the eight sectors are expected to reach their peak emissions 
before 2040, despite continued economic growth. Specifically, emissions from the Agriculture, Building, 
Manufacturing, Others, and Transportation sectors are highly likely to peak before 2030, while those from the 
Electricity and Mining sectors may peak after 2030. Our findings, which provide a deeper understanding of 
China’s potential peaking pathways at the sectoral level, can serve as a reference for other countries that are 
facing similar difficulties in identifying the appropriate ways of peaking sectoral emissions; this is currently a 
neglected field of analysis in many Nationally Determined Contributions.   

1. Introduction 

The climate change associated with carbon emissions poses un
precedented threats to the international community, such as extreme 
weather, sea-level rise, infectious diseases, biodiversity loss, and food 
shortage [1]. To mitigate climate warming, a consensus was reached 
worldwide that end-of-century warming must be maintained below 2 ◦C, 
or even 1.5 ◦C above the pre-industrial levels [2–4]. To this end, a 
growing number of nations have recently committed to realizing net- 

zero emission systems that do not increase the atmospheric carbon 
concentration by 2050 [5–6]. However, global emissions continue, 
reaching a record-high level of 33.3 Gt in 2019 [7]. While this trend has 
been reversed during the COVID-19 pandemic, with a 17% reduction in 
global daily emissions, compared with the average level in 2019, this 
reduction may be temporary, because no evidence supports any struc
tural changes to the world’s industrial systems [8]. Retaliatory emis
sions are likely to occur after the industrial production activities recover. 
As such, slowing down global warming by reducing industrial emissions 
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remains a top priority among long-term strategies for global environ
mental governance [9–10]. 

China is the largest emerging economy worldwide, which accounted 
for approximately 30% of the global carbon emissions in 2019 [11]. 
Unlike most of the G20 nations that aim to reduce their national emis
sions to a certain level in their individual Nationally Determined Con
tributions (NDCs), China has announced its aim to reach peak emissions 
in its NDCs by 2030 [12], and further become carbon neutral by 2060 
[13]. Officially, China’s total emission allowance before 2030 is not yet 
determined; it has been allocated to different provinces and cities where 
emission reduction actions are primarily implemented [14]. As China 
has planned to sustain its economic growth through the massive 
development of infrastructure and investment in the manufacturing 
sector [15],the likelihood that China’s emissions will peak in the coming 
decade becomes increasingly uncertain. However, China must reach its 
peak emissions to fulfilling the global 1.5 ◦C or 2 ◦C goals, which has 
attracted enormous attention from academia over the past few years. 
The estimates, however, often appear to be divergent, even contradic
tory [16–17]. Many argue that China’s carbon emissions may peak at the 
national level by 2030, more likely between 2025 and 2030 [18–20] , 
while others object to this argument [21–22]. 

Given the dominating role of industrial-specific emissions in the 
national emissions inventory, several studies have focused on the 
peaking paths of several industrial sectors, such as transportation [23], 
textile [24], and building sectors [25]. Further. China has entered an 
advanced stage of industrialization [26]; emissions in industrial sectors 
are expected to peak first, without which a nationwide peaking of 
emissions would be impossible. This highlights the complexity and di
versity of various industrial sectors. For instance, energy-related emis
sions in energy-intensive industries are more likely to peak faster, 
compared with those in light industries [27]. Specifically, emissions in 
the cement and steel sectors are predicted to peak by 2020 [28–30]. 
Those in the electricity sector, between 2020 and 2030 [31–32]; those in 
the petrochemical sector, around 2030 [33]; and those in the trans
portation and building sectors, between 2030 and 2035 [34–35]. The 
industrial sectors’ diversified emission trajectories increase the 
complexity and uncertainty of China’s goal to have peak emissions 
before 2030 [36]. Therefore, narrowing the focus to a single or few 
sectors is therefore insufficient to represent industrial emissions that 
substantially vary across sectors [37]. For this reason, we argue that a 
multi-sectoral perspective can provide novel insights into the potential 
peak emission pathways in China. However, to the best of our knowl
edge, future emissions between various industrial sectors in China have 
not been analyzed comparatively in the existing literature, and no 
studies translate China’s peaking goal into the sectoral levels. 

To predict future emissions and peaking paths, the Environmental 
Kuznets Curve (EKC) hypothesis can be examined in many ways using 
econometric models [38]. Furthermore, by incorporating scenario 
analysis into the econometric study, the possible emission trends can be 
understood [16]. Scenario analysis can be broadly divided into two 
categories: static and dynamic [39]. Current scenario analyses often 
include arbitrary scenario settings that assume a fixed rate of changes in 
variables [27]. Despite the broad spectrum of applicability, this 
approach is flawed in that quantitative uncertainty analysis is either 
lacking or replaced by sensitivity analysis, which can create an overly 
simplistic estimation of uncertainty [40]. The omission of uncertainties 
cannot be ignored; specifically, if some extreme scenarios rarely occur, 
they should not be treated like other scenarios. 

To overcome the shortcomings of static scenario analysis, dynamic 
scenario analysis was employed. As a mainstream dynamic scenario 
analysis, Monte Carlo simulation has been envisaged to quantify un
certainty by distributing probabilities to key variables, based on 

historical data or expert judgments [41]. Unlike deterministic ap
proaches, Monte Carlo simulation can be perceived broadly as a sto
chastic method that is appropriate for addressing problems that involve 
diverse, and even conflicting, uncertainties [42]. Monte Carlo simula
tion has become increasingly popular over the past few years because of 
uncertainty testimonies [43], with applications at scales ranging from a 
single sector [44], cities [45], and nations [46], among others. [45]. By 
providing a scientifically robust methodology for predicting different 
variables with uncertainty range, Monte Carlo simulation facilitates the 
identification of likely emission trajectories, instead of the fixed as
sumptions of some variables [47–48]. 

In this study, we investigate the emission trajectories of various in
dustrial sectors in China using both regression analysis and Monte Carlo 
simulation to identify desirable pathways for different sectors to reach 
peak emissions. This sector-level investigation would also be informa
tive for other nations, such as India—the country that is expected to 
replace China as the world’s largest carbon emitter in the coming years. 
In summary, the novel contributions of this study to the literature are 
threefold: (1) they present a full picture of China’s future emission tra
jectories for eight industrial sectors for the first time. (2) This study 
combines regression analysis and Monte Carlo simulation to examine the 
EKC hypothesis with transparent and comprehensible uncertainty esti
mates, and (3) the focus on peaking emissions is shifted from the na
tional level to the sectoral level, which is key in achieving the NDCs’ 
goals that have been neglected for a long time. 

2. Methods and data 

2.1. Sectoral carbon emissions accounting 

This study accounts for China’s carbon emissions that are relevant to 
energy consumption at both sectoral and national levels using the 
following formula: 

Cs =
44
12

∑4

i=1
(Fs,iEs,i) (1)  

where Cs is the carbon emissions of sector s, Fs
i is the carbon emission 

factors for energy I, and Es,i is the amount of consumption of sector s in 
energy i. Energy consumption could be classified into four types: coal, 
oil, natural gas, and non-fossil, all of which are then converted into 
standard coal, as per their respective heat values [49]. The emission 
factors are obtained from China’s Energy Research Institute [50]. 

2.2. The EKC hypothesis and regression analysis 

We employ a quadratic regression model to test the existential EKC 
hypothesis for the carbon emissions and GDP per capita in each sector 
using the following formula: 

lnCs = a+ blnGDPst + c(GDPst)
2
+ εs (2)  

where GDPst is the GDP per capita at time t of sector s; a, b, and c are the 
coefficients that need to be determined; and ε is an error term repre
senting all the other variables that may affect emissions. 

While ordinary least square regression is applied to the parameter 
estimation typically, its ability to deal with the multicollinearity of 
different independent variables is limited [51]. Furthermore, if time- 
series data lack co-integration, the regression results of co-integration 
methods such as the benchmark regression may be biased [52]. The 
autoregressive distributed lag (ARDL) method has been broadly adopted 
in many research fields [30,53–54]. The advantages of the ARDL 
method, over other regression methods, include (1) a lower requirement 
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of time-series data for sample size and no requirement for robustness 
testing; and (2) it can provide unbiased and valid evaluation, even if the 
independent variables are endogenous [55–56]. As such, the ARDL 
method is employed in this study for regression analysis using the 
following formula:  

where Cs,t , Cs,t− k , and Cs,t− 1 are the carbon emissions of sector s at time t, 
t-k, and t-1, respectively. Cs,t− k is the carbon emissions of sector s at time 
t-k; GDPs,t− k and GDPs,t− 1 are the GDP per capita of sector s at time t-k 
and t-1, respectively; δ1 , δ2, and δ3 are the coefficients of the lags of 
lnCs,t− 1 , lnGDPs,t− 1 , and 

(
lnGDPs,t− 1

)2 , respectively; a0 and εst are the 
constant and error terms, respectively; and ak1 , ak2 , and ak3 are the 
parameters to be determined. 

2.3. Monte Carlo simulation 

Scenario analysis serves as a valuable tool for projecting carbon 
emissions pathways at multiple scales [42]. In this study, Monte Carlo 
simulation is performed as a scenario analysis that forecasts the carbon 
emissions from China’s eight sectors. The Monte Carlo simulation pro
cess consists of three steps. First, we define prior probabilities for critical 
variables that drive carbon emissions, such as GDP per capita. As the 
probability distribution of these variables is not precisely known, 
randomly selecting the rates at which the drivers change is more suitable 
for applying the triangular distribution function [57]. Second, multiple 
simulations are conducted by distributing a random sample variable 
range based on the pre-defined probability. In our case, each industrial 
sector implements 100,000 simulations, as a more significant number of 
simulations produces more accurate results. Third, the results of GDP 
per capita simulation, accompanied with frequency distributions, pro
vide possible output values. By doing so, Monte Carlo simulation facil
itates a more accurate evaluation of the future GDP per capita and 
carbon emissions for each industrial sector in China. 

2.4. Data 

For consistency, we collected the data of China’s 56 sectors for the 
period 1995–2017 and aggregated them into eight major industrial 
sectors: Agriculture; Building; Business; Manufacturing; Mining; production 
and distributions of electricity, heat, gas, and water (PDEHGW); Building; 

Others; and Transportation as per the new Chinese industrial classifica
tion standard in 2002. The components of the eight industrial sectors are 
displayed in Table 1. Data sources are presented in Table 2. The in
dustrial value-added data are derived from the China Industry Economy 
Statistical Yearbooks (1996–2018) and China Economic Census Year
book (2004). The data on GDP has been converted to compare prices in 
2010. 

Table 1 
Classification of China’s eight industrial sectors is composed of 56 sub-sectors.  

No. Industrial 
sectors 

Sub-sectors 

1 Agriculture Agriculture, Farming of animals, Farming of animals and fishing, Fishing, Forestry, Service activities for agriculture 
2 Building Architectural decoration, Architectural installation, Construction of building & Civil engineering, Other construction 
3 Business Accommodation and restaurants, Wholesale and retail trade 
4 Manufacturing Agricultural non-staple food processing, Beverage production, Chemical fiber products, Cultural, educational and sports articles, Electrical machinery 

and equipment, Food production, Furniture manufacturing, Papermaking and paper products, Garments and other fiber products, General purpose 
machinery, Leather, furs, down and related products, Measuring instrument machinery, Medical and pharmaceutical products, Metal products, Nonmetal 
mineral products, Petroleum and nuclear fuel processing and coking, Printing and recording medium reproduction, Raw chemical materials, and 
chemical products, rubber and plastic products, Smelting and pressing of ferrous metals, smelting, and pressing of nonferrous metals, Special purpose 
machinery, Telecommunication, and other electrical equipment, Textile industry, Timber processing, bamboo, cane, palm fiber and straw products, 
Tobacco processing, Transportation equipment 

5 Mining Coal mining and dressing, Ferrous metals mining and dressing, Nonferrous metals mining and dressing, Nonmetal minerals mining and dressing, 
Petroleum and natural gas extraction 

6 PDEHGW Production and distribution of electricity and heat power, Production and distribution of gas, Production, and distribution of water 
7 Others Other sectors in the tertiary industry, such as Culture, sports and entertainment, Education, Finance, Information transmission, software, and information 

technology, Professional technique services, Public management, social security and social organization, Real estate Tenancy and business, Research, and 
experimental development, Sanitation, social security and social welfare, Scientific research and technical service, Scientific research, technical service 
and geologic perambulation, Service to households, repair, and other services 

8 Transportation Transportation, Storage, and Post  

Table 2 
Data sources for critical variables.  

Variable Description Data sources 

Carbon 
emissions 

Total carbon emissions from 
energy consumption 

China Energy Statistical 
Yearbooks (1996–2018) 

GDP per 
capita 

Total GDP of a sector divided by 
end-year employment of the 
sector 

China Economic Census 
Yearbook (2004),  
China Industrial Statistical 
Yearbooks (1996–2018)  
China Industry Economy 
Statistical Yearbooks 
(1996–2018), 
China Statistical Yearbooks 
(1996–2018) 

Population Employment by sector at the end 
of a year 

China Statistical Yearbooks 
(1996–2018)  

ΔlnCst = a0 +
∑n1

k=1
ak1ΔlnCs,t− k +

∑n2

k=1
ak2ΔlnGDPs,t− k +

∑n3

k=1
ak3Δ

(
lnGDPs,t− k

)2
+ δ1lnCs,t− 1 + δ2lnGDPs,t− 1 + δ3

(
lnGDPs,t− 1

)2
+ εst (3)   
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3. Results 

3.1. Carbon emissions accounting 

In the past decades, industrialization has driven the rapid increase in 
China’s carbon emissions. Emissions from heavy industrial sectors, such 
as the Manufacturing, Mining, and PDEHGW sectors, have risen from 0.21 
to 1.81 billion tons from 1995 to 2017 (Fig. 1), accounting for more than 
70% of the total emissions from the eight sectors. Of these, over 56% of 
the emissions can be attributed to the Manufacturing sector, followed by 
the PDEHGW, Transportation, and Mining sectors, with shares of 30%, 
5%, and 5% in 2017, respectively. In contrast to the decreasing trend in 
the emissions from the Manufacturing and Mining sectors, the increasing 

emissions from the Agriculture, Building, Transportation, and Others sec
tors are observed. As of 2017, the remaining industrial sectors, namely 
Others (1.8%), Agriculture (0.9%), Business (0.4%), and Building (0.8%), 
collectively made up approximately 4% of the total values. 

For the emissions per capita (Fig. 2), the Manufacturing, Mining, 
PDEHGW, and Transportation sectors are the top four emitters, with an 
average annual growth rate of 7%, 5%, 14%, and 17%, respectively. The 
lowest and highest annual growth rates are found in Agriculture and 
Building sectors, with an estimated 2% and 18%, respectively. The 
Business and Other sectors, often classified as the tertiary industry, have 
lower emissions per capita, compared with the rest of the sectors. As of 
2017, the Manufacturing sector was producing 145 times the emissions 
per capita of the Business sector. 

Fig. 1. Trends in the carbon emissions of eight industrial sectors. We also provide a detailed sub-sectoral composition of the top-three emitters. Abbreviations of 
these subsectors can be found in Table S1. 

Fig. 2. Trends in the carbon emissions per capita of eight industrial sectors.  
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3.2. The EKC hypothesis testing 

The first step in analyzing time series data is to determine whether 
they are stationary. To achieve this goal, we chose the Generalized least- 
squares detrended augmented Dickey-Fuller test (DF-GLS) unit root tests 
because it is more suitable for small samples, compared to other unit 
root tests. The results displayed in Table 3 show that the logarithmic 
sequence of three variables (i.e., carbon emissions per capita, GDP per 
capita, and the square of GDP per capita) for all eight sectors are stable 
at the 1% or 5% significance levels. In contrast, the logarithmic sequence 
of the variables for the Building, Business, Manufacturing, Mining, 
PDEHGW, and Transportation sectors are stable at the 5% or 10% sig
nificance levels. In sum, all the variables used in this study are consistent 
with I (0) or I (1) stationery. Therefore, they can be used for the esti
mation of the ARDL model. 

The ARDL bound test is appropriate for small-sized samples with 
practical estimation and high tolerance of bound [58–59]. The ARDL 
bound test is used to examine the co-integrating relationships among the 
eight sectors. First, it is necessary to determine the optimal lag length 
based on the Akaike information criterion (AIC). Table 4 shows the 

results of lag order selection. 
We test the EKC hypothesis, in which the carbon emissions per capita 

of China’s eight industrial sectors are dependent variables. After intro
ducing the panel data for the period 1995–2017 into the ARDL method, 
the corresponding sectoral GDP per capita and its square become inde
pendent variables. The regression results for all the sectors are displayed 
in Table 5. As shown, the EKC hypothesis holds for seven industrial 
sectors, in which GDP per capita exhibits an inverted U-shaped rela
tionship with sectoral emissions per capita. We find that the GDP per 
capita has the most significant impact on the emissions from the Agri
culture sector, followed by the Building and Transportation sectors. The 
emissions from the Manufacturing, Mining, PDEHGW, and Others sectors 
correlate significantly with economic growth. Regarding the Business 
sector, however, no evidence supports the EKC hypothesis. Instead, a 
linear correlation has been observed, implying that the Business sector is 
unlikely to reach peak emissions in the coming years. This suggests that 
there is much room for the development of the Business sector, partially 
because most of the sub-sectors, such as the Accommodation and res
taurants and Wholesale and retail trade in the Business sector, appear to 
be environmentally friendly—they do not involve excessive material 
production and burning of fossil fuels [60]. 

In contrast to the Business sector, the emissions in all the other in
dustrial sectors tend to peak when the corresponding GDP per capita 
reaches a turning point. The Agriculture sector was observed to have the 
lowest turning point, with a GDP per capita of 37,281 RMB. This is 
followed by the Building, Transportation, Mining, Manufacturing, and 
PDEHGW sectors. The Others sector had the highest turning point, with a 
GDP per capita of 86,452 RMB. Furthermore, we estimate the number of 
years that are required for each sector to reach the peak emissions at an 
average growth rate over the past 13 years. The gaps between current 
GDP per capita and estimated turning points vary substantially across 
industrial sectors, ranging from 7,631 RMB for the Agriculture sector to 
46,461 RMB for the Others sector in absolute values. Such variations 
warrant an in-depth discussion on the differentiated pathways to peak 
China’s emissions at the sectoral level, rather than narrowing the focus 
to the whole country or considering various industries as one sector. 

3.3. Monte Carlo simulation 

Considering all the economic growth scenarios under the existing 
policies, we explore the probability distributions of GDP per capita 
through Monte Carlo simulation over 100,000 times. By exploring the 
correlation of peak emissions per capita and the corresponding GDP per 
capita further, we noted prominent differences between different in
dustrial sectors. As mentioned above, the highest turning point (86,452 

Table 3 
Unit root test (DF-GLS) for eight industrial sectors.  

Sectors Test var. (x) Level (T-statistic) 1st diff. (T-statistic) 

Agriculture lnC − 0.048 − 3.264*** 
lnGDP − 0.163 − 2.643** 
(lnGDP)2 − 0.090 − 2.724*** 

Building lnC − 1.739* − 4.208*** 
lnGDP − 2.385 − 3.612*** 
(lnGDP)2 − 1.534 − 3.208*** 

Business lnC − 2.592 − 4.808*** 
lnGDP − 3.761*** − 2.048** 
(lnGDP)2 − 2.958*** − 3.724*** 

Manufacturing lnC − 2.307** − 2.753** 
lnGDP − 1.417 − 2.241*** 
(lnGDP)2 − 2.768** − 2.038*** 

Mining lnC − 2.095** − 4.828*** 
lnGDP − 1.110 − 2.092*** 
(lnGDP)2 − 0.182 − 4.255*** 

PDEHGW lnC − 0.827 − 4.211*** 
lnGDP − 0.750 − 4.088*** 
(lnGDP)2 − 1.792** − 4.238*** 

Others lnC − 0.744 − 5.039*** 
lnGDP − 0.735 − 3.705*** 
(lnGDP)2 − 0.067 − 3.608*** 

Transportation lnC − 0.827 − 4.211*** 
lnGDP − 2.798** − 4.062*** 
(lnGDP)2 − 1.792* − 4.238*** 

Note:***, **, and * represent statistical significance at the 1%, 5%, and 10% 
level, respectively. The same below. 

Table 4 
ARDL bound test cointegration for eight industrial sectors.   

Sectors Optimal 
AIC lags 

F- 
statistics 

Cointegration 
exist or not 

Estimated model 
FC (LLC/ 
LnGDP, 
LnGDP2) 

Agriculture (2,1,1)  4.551** Yes 
Building (2,1,2)  22.891*** Yes 
Business (2,1,0)  5.135** Yes 
Manufacturing (1,1,0)  17.792*** Yes 
Mining (1,2,1)  12.436*** Yes 
PDEHGW (1,1,0)  14.516*** Yes 
Others (1,1,0)  35.197*** Yes 
Transportation (1,1,2)  8.126*** Yes  
Critical values of Pesaran et al. [59], N = 30 

Significance level Lower bound I (0) Upper bound I (1) 
1% 4.614 5.966 
5% 3.272 4.306 
10% 2.676 3.586 

Notes: The critical values are collected from Pesaran et al. [59]. AIC determines 
the optimal lag length. 

Table 5 
ARDL regression analysis for eight industrial sectors.  

Sectors LnGDP (LnGDP)2 EKC 
holds 

Turning 
point (RMB) 

GDP per 
capita in 
2017 

Agriculture 3.573*** 
(0.891) 

− 0.170*** 
(0.048) 

Yes 37,281 29,650 

Building 6.555** 
(3.293) 

− 0.308** 
(0.172) 

Yes 46,631 20,927 

Business 3.803* 
(2.964) 

0.862* 
(0.542) 

No None 13,249 

Manufacturing 0.381* 
(0.094) 

− 0.017* 
(0.621) 

Yes 71,396 51,883 

Mining 21.829* 
(16.104) 

− 1.012* 
(0.778) 

Yes 55,050 45,177 

PDEHGW 2.408* 
(2.263) 

− 0.107* 
(0.058) 

Yes 80,821 57,941 

Others 1.424** 
(0.473) 

− 0.064** 
(0.146) 

Yes 86,452 39,991 

Transportation 2.371*** 
(0.738) 

− 0.088** 
(0.039) 

Yes 53,236 44,048 

Notes: Standard errors are provided in parentheses. 
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Fig. 3. Average values and 95% confidence intervals of the prediction of sectoral emissions per capita through Monte Carlo simulation (a) Agriculture (b) 
Building (c) Manufacturing (d) Mining (e) PDEHGW (f) Others (g) Transportation. 
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RMB) is observed in the Others sector, and it is 2.3 times the lowest 
turning point (37,281 RMB) for the Agriculture sector. However, this 
does not necessarily mean that reaching peak emissions in the Others 
sector is more complex than it is in the other cases, because the sectoral 
GDP per capita and its growth rates vary considerably. In 2017, for 
instance, the current GDP per capita of the Agriculture and Others sectors 
amounted to 29,650 and 39,991 RMB, accounting for 80% and 46% of 
the turning points, respectively. By 2030, the GDP per capita is most 
likely to rise to 45,972 and 64,268 RMB in the Agriculture and Others 
sectors, respectively. The simulation results indicate that, in all the in
dustrial sectors, the GDP per capita will increase continuously, although 
the growth will decrease. This is particularly true for the Mining and 
PDEHGW sectors, in which the GDP per capita will increase with average 
annual rates of 8% and 6% between 2018 and 2024, and 6% and 4% 
between 2024 and 2030, respectively. 

3.4. Carbon emissions projection 

China’s future per capita emission trajectories for all the industrial 
sectors, except the Business sector, are illustrated in Fig. 3. The results 
show a significant variation in the peak-reaching time and emissions 
among these sectors. The Building and Others sectors are expected to 
reach their peak emissions per capita in the period between 2021 and 
2028, with the possible peak values of 3.7 and 1.25 tons, respectively. 
However, as GDP per capita continues to grow, the Building sector will 
experience a much more rapid decline than the Others sector after 
reaching their peak emissions. Carbon emissions per capita from the 
Agriculture, Transportation, Manufacturing, PDEHGW, and Mining sectors 
are expected to peak during the periods 2025–2032, 2025–2034, 
2026–2036, 2028–2033, and 2029–2034, respectively. Nevertheless, 
the discrepancy in the emission trajectories and peak values between 
these industrial sectors seems remarkably large. The Manufacturing, 
PDEHGW, and Transportation sectors would maintain a relatively stable 
emission level after reaching the peak. In contrast, a relatively sharp 
decrease in the emissions per capita can be observed for the Agriculture 
and Mining sectors. Among the seven industries, the highest peak 
emissions per capita are found in the Manufacturing and Mining sectors at 
a range of 12.76–12.88 and 9.69–11.46 tons, respectively. They are 
followed by the PDEHGW and Transportation sectors, whose peak 
emissions per capita are estimated at 9.74–13.42 and 8.71–9.86 tons, 
respectively. The anticipated peak emissions per capita of the Agricul
ture, Building, and Others sectors appear to be much lower, ranging from 
5.08 to 5.44, 1.46 to 3.71, and 1.13 to 1.26 tons, respectively. 

Manufacturing, PDEHGW, and Others sectors are under more signifi
cant pressure, and they need to reach the peak emissions when the GDP 

per capita amounts to 71,396, 80,821, and 86,452 RMB, respectively. 
PDEHGW has a lower peak, which means that this industry should 
further promote low-carbon production while maintaining good eco
nomic growth. The peak GDP per capita of the Agriculture and Con
struction sectors is relatively low, both below 50,000 RMB. However, due 
to these two industries’ low peak emissions per capita, the pressure to 
reach the peak is also more significant. The GDP per capita of the 
Transportation and Mining sectors reached 53,236 and 55,050 RMB, 
respectively, when the inflection point was reached, and the peak 
emissions per capita of the Transportation sector were relatively high; 
therefore, the pressure of the Transportation sector to reach the peak was 
relatively small in comparison. 

Fig. 4 displays the earliest, latest, and most likely peaking time and 
values of seven sectors in total. The Agriculture sector is likely to peak 
before 2030, most likely in 2025, owing to the ever-improving tech
nology in agricultural production [61]. The forecast results indicate that 
the Building sectors’ GDP will increase rapidly between 2018 and 2023 
and slowly decline between 2023 and 2025, with the peaking period 
ranging from 2021 to 2028, most likely in 2024, which corresponds to 
3.70 tons. Meanwhile, the Manufacturing and Mining sectors will peak in 
the periods 2026–2036 and 2029–2034, with peaking values of 12.89 
tons and 11.46 tons, respectively. Because the Manufacturing sector ac
counts for 62% of total emissions, this sector plays a crucial role in the 
expected peaking of emissions among all the industrial sectors [62]. 
Both the Manufacturing and Mining sectors have significant probabilities 
of peak emissions per capita before 2030. If the above two sectors could 
achieve a substantial reduction in emissions, China will likely become 
emissions free sooner than previously thought. If not, China is more 
likely to undergo a long-term plateau after its carbon emissions peak. 
The Others sector will peak between 2021 and 2028, most likely in 2025, 
with a peaking value of 1.25 tons. However, emissions from the 
PDEHGW sector will peak between 2028 and 2033, most likely in 2031, 
with a peaking value of 13.38 tons. The Transportation sector is 
considered as one of the fastest increasing drivers in China [63] and is 
predicted to peak between 2025 and 2034, most likely in 2028, with a 
peaking value of 9.72 tones. 

4. Discussion 

4.1. Comparison of projections with literature 

Previous studies have increasingly focused on the pathway pro
jections of China’s peak emissions. A comparison between the peaking 
periods of industrial sectors in China in this study and those in previous 

Fig. 4. Peaking time of seven industrial sectors with three scenarios.  

Table 6 
Comparison of this paper with the previously researches.  

Sector Reference Peaking year with 
the highest 
probability 

The earliest 
peaking year 

The latest 
peaking 
year 

Agriculture This 
paper 

2026 2025 2032 

[37]  2021 2031 
Building This 

paper 
2024 2021 2028 

[65] 2031 2027 2036 
Manufacturing This 

paper 
2029 2026 2036 

[48] 2031 2024 2035 
Mining This 

paper 
2031 2029 2034 

[17] 2024 2022 2029 
PDEHGW This 

paper 
2031 2028 2033 

[83]  2023 2031 
Transportation This 

paper 
2028 2025 2034 

[64] 2032 2026 2033  
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studies is provided in Table 6. As illustrated, the various sectors differ 
dramatically in their possible peak-reaching time. 

Our prediction estimates on the Agriculture, Manufacturing, PDEHGW, 
and Mining sectors are generally consistent with those in the existing 
literature. Meanwhile, we find that it is easier for the emissions in the 
Building and Transportation sectors to peak, contrasting previous pre
dictions. The most notable gaps between our estimates and those in the 
literature are observed in the Transport and Building sectors. Owing to 
the exponentially growing use of electric vehicles and low-carbon 
building materials in recent years, these two sectors will reach peak 
emissions earlier than previously thought [64–65]. 

Methodological differences in emission projections are probably the 
leading cause of the distinction between our results and those in the 
literature. Generally, the methods used could be divided into two types: 
econometrics models (e.g., EKC and Kaya identity) and the partial or 
general equilibrium models (i.e., computable general equilibrium (CGE) 
and an integrated assessment model (IAM)). Both models have strengths 
and weaknesses. The projections of the industrial sectors’ carbon 
emissions face a major threat due to the high complexity and random
icity in the economic and social development [66]. Scenario settings in 
the existing studies usually involve a certain probability that cannot 
account for the stochastic uncertainties. Consequently, we employ a 
sophisticated technique—Monte Carlo simulation—to address the sto
chastic uncertainties in our emissions prediction. 

4.2. Innovation and uncertainties 

Compared to previous studies, this study makes three novel contri
butions to the literature. First, we present, for the first time, the full 
picture of the peaking pathways of the emissions in China’s eight in
dustrial sectors, which in aggregate made up 73% of China’s total 
emissions in 2017. Second, in contrast to most scenario analyses that 
cannot account for stochastic uncertainties, we combine regression 
analysis and Monte Carlo simulation to examine the EKC hypothesis 
using probabilistic uncertainty modeling. As a result, the likely emission 
trajectories are predicted using probability distribution instead of fixed 
numbers. Third, our paper calls for a shift in the focus from China’s peak 
emissions to the sectoral peak emissions. It proceeds with the recogni
tion that sectors are key in making the efforts to reach peak emissions, 
which is largely neglected in current discourses on the pathways to peak 
emissions. Most studies focus on the role of heterogeneity between 
different regions in reaching the goal of peaking emissions by 2030, 
while ignoring that between different sectors [67]. 

Research on future peaking pathways inevitably contains un
certainties and limitations. This study attempts to conduct a preliminary 
survey of China’s emission peaks. First, our accounting of China’s car
bon emissions by sector has some uncertainties [18,68–69]; however, 
many studies have adopted this approach broadly [68,70–71]. After 
comparing our estimated emissions with those by Shan et al. [11], a 
disagreement of less than 8% is found. Another uncertainty emanates 
from the variable distribution settings in our Monte Carlo simulation 
[72]. Studies that discuss the possible trends in these variables after the 
COVID-19 pandemic are scarce. Therefore, future work needs to explore 
how the energy and economic systems would change in the post-COVID- 
19 era, both on the international and intranational scales. Moreover, 
although Monte Carlo has so many advantages in dealing with uncer
tainty, in this case it does not consider the impact caused by policy 
change. Therefore, combining specified policy scenarios with Monte 
Carlo simulations would be a next step towards a more scientifically 
reliable analysis. 

4.3. Policy implications 

The COVID-19 pandemic has uncovered the fragile economic, social, 
and environmental underpinnings in the world. China’s unprecedented 
lockdowns against the COVID-19 outbreak have led to a sharp decline in 

carbon emissions during the early months of the pandemic [73–74]. 
While emissions reduction is desirable, this was not the ideal means to 
achieve this reduction; moreover, the efforts to recover the economy 
may cause carbon emissions to rebound quickly in the near future [75]. 
Although current industrial lobbies tend to pressure the government to 
relax environmental regulations [76], climate actions should not take a 
back burner to economic recovery. The authorities should keenly 
observe the progress of China’s NDCs and propose new industrial, 
financial, technological, and institutional measures [77]. Our results 
have the potential to inform policymakers on sector-specific policies. 
The Agriculture sector is very likely to attain peak emissions before 2030. 
The challenge entails preventing peak emissions per capita from being 
too high, and this would require a transition towards a green and 
modern agricultural system. The same situation applies to the Others 
sector, which is expected to peak emissions prior to 2030 with a rela
tively low peak-reaching value. The Transportation and Building sectors 
are more likely to peak emissions around 2035. The high quality peaking 
of emissions in the Others sector can be achieved through technological 
innovation and application; for instance, the development of new energy 
vehicles [77]. Regarding the Building sector, the share of emissions has 
increased, and the energy saving techniques for residential buildings 
should be developed [78]. The emissions in the Manufacturing sector, 
which are the highest among the eight sectors, are likely to peak be
tween 2026 and 2036. The more emission reduction policies are 
implemented, the more likely the peak-reaching time will move for
ward. The same holds true for the PDEHGW and Mining sectors, which 
are supposed to reach peak emissions during the periods 2028–2033 and 
2029–2034, respectively. Moreover, energy transition plays a critical 
role in the ongoing supply-side reform of China. A high proportion of 
renewables in power systems will enable an earlier peak-reaching time 
for these sectors [79]. Furthermore, developing countries that show 
continuous increases in carbon emissions play an increasingly important 
role in global climate mitigation [80]. In that sense, our analysis, which 
focuses on China—the world’s largest emissions trading market and 
emitter of carbon emissions [81]—can serve as a reference for other 
countries to improve their peaking pathways from a sectoral 
perspective. 

5. Conclusions 

By tracing China’s emission trajectories at the sectoral level and 
examining the EKC hypothesis for the eight industrial sectors, using both 
regression analysis and Monte Carlo simulation, we found that: (1) the 
Manufacturing, Production and distributions of electricity, heat, gas, and 
water Transportation, and Mining sectors accounted for nearly 56%, 30%, 
5%, and 5% of the total emissions from the eight sectors in 2017, 
whereas the other four sectors collectively contributed 4%. Regarding 
the emissions per capita, the first two sectors remain unchanged; (2) the 
Building, Production and distributions of electricity, heat, gas, and water 
Transportation, and Transportation sectors experience fast growth in their 
emissions, while the proportions of the Manufacturing and Mining sectors 
continuously decline; (3) the Agriculture, Building, Transportation, and 
Others sectors may peak emissions before 2030—the Manufacturing and 
Production and distributions of electricity, heat, gas, and water Trans
portation sectors will more likely peak after 2030, and the peaking 
pathway of the Business sector remains unclear; (4) The differentiated 
mitigation policies based on the characteristics and dynamics of each 
industrial sector would be highly needed to fulfill China’s latest ambi
tious goals to peak emissions by 2030 and even become carbon neutral 
by 2060; however, this analysis field is neglected in current discourses 
on China’s peak emissions. 

Future work needs to explore how the energy and economic systems 
would change in the post-COVID-19 era, both on the international and 
intranational scales. Although this paper provides novel insights into the 
potential pathways in which emissions peak in China by presenting a 
complete picture of the various sectors, rather than single ones, the peak 
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emissions within each of the sectors should be investigated in detail. 
This is particularly true if the analysis aims to inform policymakers on 
how to maintain global warming thresholds and improve China’s 
emission trading scheme. For example, subsectors like electricity, 
cement, and chemicals substantially contribute to the national emission 
inventory; therefore, their individual peaking pathways deserve priority 
attention. Currently, China’s cap and trade is primarily implemented at 
the provincial level; therefore, studies that focus on the peaking emis
sions of each sector in different provinces are required [82]. Given the 
fundamental role of industrial sectors in achieving the Chinese Nation
ally Determined Contributions, it is necessary to ensure that the long- 
term mitigation goals of the eight sectors align with China’s latest 
ambition to be carbon neutral by 2060. Research into China’s potential 
peaking pathways at the sectoral level can be of global significance, as it 
will serve as a reference for other countries facing similar difficulties in 
identifying the appropriate ways of peaking sectoral emissions. 
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